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We present a method for provably robust control via deep RL, which embeds a differentiable projection layer
into a neural network policy in order to enforce robust control stability criteria.

Motivation

Deep RL methods often give no safety or
stability guarantees

— Dealbreaker for safety-critical systems
(e.g., airplanes, power grids)

Robust control gives provably stabilizing
policies, but they are simple (e.g., linear)
— Limited overall performance

Goal: Bridge the gap by enforcing robust
control criteria within neural network
policies trained via RL

Related work

Safe RL: Aims to learn “safe” control policies
by making smoothness assumptions about
dynamics; no provable guarantees

Robust control + RL: Efforts combining
control-theoretic ideas with RL.
Predominantly limited to H, control.

Differentiable optimization layers: NN
layers with optimization problem as forward
pass, and backward pass via implicit function
theorem. We employ such layers in our work.
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Approach

Step 1: Construct set of stabilizing actions
* Obtain Lyapunov function V via robust control
» Compute C(x(t)) = {u(t) |V(x(t)) < —aV(x(t)) Vt}

Projection
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Step 2: Construct policy mg
* Construct deep network 1y

* Policyisthenmy(x(1)) = Proje(, ) (g (x(1)))

Backprop

System: Unknown, nonlinear with uncertainty bound, e.g. NLDI:

w(t) e Ax(t) + Bu(t) + Gw(t) s.t.||lw(O)|l, < ||Cx(t) + Du(t)||,

Environment

Step 3: Train end-to-end using deep RL techniques
» Gradient through projection via implicit function thm

Results
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Non-robust methods We test our method under two settings:
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* Improves “average-case”
47.8 41.2 50.0 16.3

Quadrotor

performance over robust baselines
* remains stable under “worst-case”
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